Psk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase.

نویسندگان

  • Akio Nakashima
  • Yoko Otsubo
  • Akira Yamashita
  • Tatsuhiro Sato
  • Masayuki Yamamoto
  • Fuyuhiko Tamanoi
چکیده

Target of rapamycin (TOR), an evolutionarily conserved serine/threonine protein kinase, plays pivotal roles in several important cellular processes in eukaryotes. In the fission yeast Schizosaccharomyces pombe, TOR complex 1 (TORC1), which includes Tor2 as a catalytic subunit, manages the switch between cell proliferation and differentiation by sensing nutrient availability. However, little is known about the direct target of TORC1 that plays key roles in nutrient-dependent TORC1 signaling in fission yeast. Here we report that in fission yeast, three AGC kinase family members, named Psk1, Sck1 and Sck2, which exhibit high homology with human S6K1, are phosphorylated under nutrient-rich conditions and are dephosphorylated by starvation conditions. Among these, Psk1 is necessary for phosphorylation of ribosomal protein S6. Furthermore, Psk1 phosphorylation is regulated by TORC1 in nutrient-dependent and rapamycin-sensitive manners in vivo. Three conserved regulatory motifs (the activation loop, the hydrophobic and the turn motifs) in Psk1 are phosphorylated and these modifications are required for Psk1 activity. In particular, phosphorylation of the hydrophobic motif is catalyzed by TORC1 in vivo and in vitro. Ksg1, a homolog of PDK1, is also important for Psk1 phosphorylation in the activation loop and for its activity. The TORC1 components Pop3, Toc1 and Tco89, are dispensable for Psk1 regulation, but disruption of pop3(+) causes an increase in the sensitivity of TORC1 to rapamycin. Taken together, these results provide convincing evidence that TORC1/Psk1/Rps6 constitutes a nutrient-dependent signaling pathway in fission yeast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TORC2 and the AGC kinase Gad8 regulate phosphorylation of the ribosomal protein S6 in fission yeast

TOR (Target Of Rapamycin) signalling coordinates cell growth and division in response to changes in the nutritional environment of the cell. TOR kinases form two distinct complexes: TORC1 and TORC2. In mammals, the TORC1 controlled S6K1 kinase phosphorylates the ribosomal protein S6 thereby co-ordinating cell size and nutritional status. We show that the Schizosaccharomyces pombe AGC kinase Gad...

متن کامل

TORC1 and TORC2 collude to regulate Ribosomal Protein S6 phosphorylation in Saccharomyces cerevisiae

Nutrient-sensitive phosphorylation of the S6 protein of the 40S subunit of the eukaryote ribosome is highly conserved. However, despite four decades of research, the functional consequences of this modification remain unknown. Revisiting this enigma in Saccharomyces cerevisiae we found that the regulation of Rps6 phosphorylation on Ser232 and Ser233 is mediated by both TOR Complex 1 and 2. TORC...

متن کامل

Psk 1 , an AGC kinase family member in fission yeast , is directly phosphorylated and controlled by TORC 1 as S 6 kinase

Dept. of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489 Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan Laboratory of Gene Function, Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu, C...

متن کامل

TOR regulation of AGC kinases in yeast and mammals.

The TOR (target of rapamycin), an atypical protein kinase, is evolutionarily conserved from yeast to man. Pharmacological studies using rapamycin to inhibit TOR and yeast genetic studies have provided key insights on the function of TOR in growth regulation. One of the first bona fide cellular targets of TOR was the mammalian protein kinase p70 S6K (p70 S6 kinase), a member of a family of kinas...

متن کامل

Phosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition

TOR (target of rapamycin) signaling coordinates cell growth, metabolism, and cell division through tight control of signaling via two complexes, TORC1 and TORC2. Here, we show that fission yeast TOR kinases and mTOR are phosphorylated on an evolutionarily conserved residue of their ATP-binding domain. The Gad8 kinase (AKT homologue) phosphorylates fission yeast Tor1 at this threonine (T1972) to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 125 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2012